If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-4x=15
We move all terms to the left:
49x^2-4x-(15)=0
a = 49; b = -4; c = -15;
Δ = b2-4ac
Δ = -42-4·49·(-15)
Δ = 2956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2956}=\sqrt{4*739}=\sqrt{4}*\sqrt{739}=2\sqrt{739}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{739}}{2*49}=\frac{4-2\sqrt{739}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{739}}{2*49}=\frac{4+2\sqrt{739}}{98} $
| 4(s+7)=85 | | -2x+2=-30 | | 146=(2)49+2x | | 4x+3x=9x+4 | | -32=-15=a | | 2x-11+2x-6+x=180 | | -2x+2=30 | | 9.1x+900=82.81+30x | | -30h=45 | | 13+8(5x-9=21 | | -15-3=t | | 2+1.25f=10-2.85 | | 3y+2y=9y+4 | | 8/n+2=12 | | 2x-3(4x)=-10 | | 6.64x+66.4=132.8 | | 3k+10=21+3k | | x(2)-10=18x | | 5x-2+4=16 | | O.2(f+15)=3 | | 2(3k-1)5+4=3k | | x=-6+24 | | 8x+3(2-3x=28 | | 2(1)-3y=11 | | 64/143-21/208=a | | 7x+9(2x-4=14 | | 4k+2=8+6k-5k | | 5x=5(x-6) | | -(d+5)=11.4 | | 6÷5(7-4)=x | | -14n+8=-10n-12 | | r=9+(-12) |